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Abstract
Using the results of previous investigations on sine-Gordon form factors,
exact expressions of all breather matrix elements are obtained for several
operators: all powers of the fundamental Bose field, general exponentials
of it, the energy–momentum tensor and all higher currents. Formulae for the
asymptotic behaviour of bosonic form factors are presented which are motivated
by Weinberg’s power counting theorem in perturbation theory. It is found that
the quantum sine-Gordon field equation holds, and an exact relation between
the ‘bare’ mass and the renormalized mass is obtained. Also a quantum version
of a classical relation for the trace of the energy–momentum is proved. The
eigenvalue problem for all higher conserved charges is solved. All results are
compared with perturbative Feynman graph expansions and full agreement is
found.

PACS numbers: 11.10.−z, 11.10.Kk, 11.55.Ds

1. Introduction

This work continues previous investigations [1, 2] on exact form factors for the sine-Gordon,
alias the massive Thirring, model. Some results of the present paper have been published
previously [3]. The classical sine-Gordon model is given by the wave equation

�ϕ(t, x) +
α

β
sin βϕ(t, x) = 0.

Since Coleman [4] found the wonderful duality between the quantum sine-Gordon and the
massive Thirring model, a great deal of effort has been made to understand this quantum field
theoretic model. The present article is a further contribution in this direction. The main new
results are:
1 Permanent address: Yerevan Physics Institute, Alikhanian Brothers 2, Yerevan, 375036, Armenia.
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(1) Using Weinberg’s power counting theorem, we prove in perturbation theory that matrix
elements of exponentials of a Bose field satisfy a ‘cluster property’ in momentum space.
We use this as a characterizing property for exponentials of Bose fields.

(2) In [2] we introduced the concept of ‘p-functions’ which belong to local operators for the
sine-Gordon solitons (see also [5, 6]). Here we formulate that concept for the sine-Gordon
breathers.

(3) We investigate the higher conservation laws which are typical for integrable quantum field
theories. Hereby, we correct a mistake in the literature (see footnote 8).

(4) We prove the quantum field equation of motion. Thus we derive independently the matrix
elements of the operators ϕ and : sin βϕ : and show that they satisfy the field equation
(after a finite mass renormalization). Hereby, we again correct some mistakes in the
literature (see footnote 9).

In addition, we also recall some known formulae in order to present a more complete
picture of the sine-Gordon breather form factors. The sine-Gordon model, alias the massive
Thirring model, describes the interaction of several types of particles: solitons, anti-solitons,
alias fermions and anti-fermions, and a finite number of charge-less breathers, which may be
considered as bound states of solitons and anti-solitons. Integrability of the model implies
that the n-particle S-matrix factorizes into two-particle S-matrices.

The ‘bootstrap’ program for integrable quantum field theoretical models in 1 + 1
dimensions starts as the first step with the calculation of the S-matrix. Here (see e.g. [7, 8])
our starting point is the two-particle sine-Gordon S-matrix for the scattering of fundamental
bosons (lowest breathers) [9]2,

S(θ) = sinh θ + i sin πν

sinh θ − i sin πν
.

The pole of S(θ) at θ = iπν belongs to the second breather b2 as a breather–breather bound
state. The parameter ν is related to the sine-Gordon and the massive Thirring model coupling
constant by

ν = β2

8π − β2
= π

π + 2g

where the second equation is due to Coleman [4].
As a second step of the ‘bootstrap’ program, off-shell quantities as arbitrary matrix

elements of local operators
out〈p′

m, . . . , p′
1|O(x)|p1, . . . , pn〉in

are obtained by means of the ‘form factor program’ from the S-matrix as an input. Form factors
for an integrable model in 1 + 1 dimensions were first investigated by Vergeles and Gryanik
[10] for the sinh-Gordon model and by Weisz [12]3 for the sine-Gordon model. The ‘form
factor program’ was formulated in [14, 15] where the concept of generalized form factors was
introduced. In that paper consistency equations were formulated which are expected to be
satisfied by these objects. Thereafter this approach was developed further and studied in the
context of several explicit models by Smirnov [16] who proposed the form factor equations
(see below) as extensions of similar formulae in the original paper [14]. Further publications
on form factors and in particular on sine-Gordon and sinh-Gordon form factors are [17–27, 30].
Smirnov’s approach in [17] is similar to the one used in the present article (see section 6).
Also, there is a nice application [28, 29] of form factors in condensed matter physics, for
example, for one-dimensional Mott insulators.
2 This S-matrix element has been discussed before in [10, 11].
3 Similar results were obtained by Zamolodchikov [13].
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Let O(x) be a local operator. The generalized form factors On(θ1, . . . , θn) are defined by
the vacuum—n-lowest breather matrix elements

〈0|O(x)|p1, . . . , pn〉in = e−ix(p1+···+pn)On(θ1, . . . , θn) for θ1 > · · · >θn

where the θi are the rapidities of the particles p
µ

i = m(cosh θi, sinh θi). In the other sectors
of the variables, the functions On(θ1, . . . , θn) are given by analytic continuation with respect
to the θi . General matrix elements are obtained from On(θ) by crossing, which means in
particular the analytic continuation θi → θi ± iπ .

In [14] one of the present authors (MK) and Weisz showed that for the case of a diagonal
S-matrix, the n-particle form factor may be written as

On(θ) = KO
n (θ)

∏
1�i<j�n

F (θij ) (1)

where θij = |θi − θj | and F(θ) is the two-particle form factor (see section 2). The K-function
is an even 2π i periodic meromorphic function. In [2] we presented a general formula for
soliton–anti-soliton form factors in terms of an integral representation. Using the bound state
fusion method, we derived the general soliton breather and pure breather form factor formula
which we will investigate in this article in more detail. In particular for the case of lowest
breathers, the K-function turns out to be of the form4

KO
n (θ) =

1∑
l1=0

· · ·
1∑

ln=0

(−1)l1+···+ln
∏

1�i<j�n

(
1 + (li − lj )

i sin πν

sinh θij

)
pO

n (θ, l). (2)

The breather p-function pO
n (θ1, . . . , θn; l1, . . . , ln) encodes the dependence on the operator

O(x). It is obtained from the solitonic p-function pO
sol,2n(θ̃1, . . . , θ̃2n; z1, . . . , zn) (see [2]) by

setting θ̃2i−1 = θi + 1
2 iu(1), θ̃2i = θi − 1

2 iu(1) and zj = θj − iπ
2 (1 − (−1)lj ν) with the fusion

angle u(1) = π(1−ν). In [2] we proposed the solitonic p-functions for several local operators.
In this way, we obtained all breather p-functions which are some sort of decedents of solitonic
p-functions, i.e. we just used the solitonic ones in the bound state points. In the present article
we will take a somewhat different point of view. We will obtain a wider class of p-functions
corresponding to local operators with respect to the breather field, also including operators
which are non-local with respect to the solitonic field. The alternative point of view is the
following: as already mentioned, it has been shown in [14] that a form factor of n fundamental
bosons (lowest breathers) is of the form (1) where the K-function KO

n (θ) is meromorphic,
symmetric and periodic (under θi → θi + 2π i). In addition, it has to satisfy some additional
conditions (see section 2). We consider equation (2) as an ansatz for the K-function which
transforms these conditions on the K-functions into simple equations for the p-functions. In
section 4 we present solutions of these equations.

In this paper, we propose the p-functions for several local operators. In particular, we
consider the infinite set of local currents J ±

L (x), L = ±1,±3, . . . belonging to the infinite set
of conservation laws which are typical for integrable quantum field theories. For this example,
the correspondences between the operators, the K-functions and the p-functions are (up to
normalization constants)

J ±
L (x) ↔ K(L,±)

n (θ) ↔ p(L,±)
n (θ, l) ∝

n∑
i=1

e±θi

n∑
i=1

eL(θi− iπ
2 (1−(−1)li ν)).

Here the breather p-function is obtained from the corresponding solitonic one [2].
4 For the sinh-Gordon model and the case of the exponential field, Brazhnikov and Lukyanov [23] found by different
methods a formula which agrees with our results. Smirnov [17] derived an integral representation of sine-Gordon
breather form factors (see section 6.2) which agrees for some cases with our results (e.g. for the current and the
energy–momentum tensor), but not in the case of the higher currents (see also footnote 7).
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In contrast to this case, the breather p-function for exponentials : eiγϕ : (x) of the field ϕ

for generic real γ is not related to a solitonic p-function of any local operator (which means
that : eiγϕ : (x) is not local with respect to the soliton field). Now the correspondences are
(see footnote 4)

:eiγϕ :(x) ↔ K(q)
n (θ) ↔ p(q)

n (l) = N(q)
n

n∏
i=1

q(−1)li

where q = q(γ ) (see section 4). Here and in the following : · · · : denotes normal ordering
with respect to the physical vacuum. This, in particular for the vacuum expectation value,
means 〈0| : ϕN : (x)|0〉 = 0 and therefore 〈0| : eiγϕ : (x)|0〉 = 1. In section 4 we present
arguments to support these correspondences and also determine the normalization constants
NO

n .
As an application of these results we investigate quantum operator equations. In particular,

we provide exact expressions for all matrix elements of all powers of the fundamental Bose
field ϕ(t, x) and its exponential : eiγϕ : (t, x) for arbitrary γ . We find that the operator
�−1 : sin βϕ(x) : is local. Moreover, the quantum sine-Gordon field equation5

�ϕ(x) + m2 πν

sin πν

1

β
: sin βϕ :(x) = 0

is fulfilled for all matrix elements. The factor πν
sin πν

modifies the classical equation and has
to be considered as a quantum correction of the breather mass m as compared with the ‘bare’
mass

√
α. Further, we find that the trace of the energy–momentum tensor T µν satisfies

T µ
µ (x) = −2

α

β2

(
1 − β2

8π

)
(:cos βϕ :(x) − 1).

Again this operator equation is modified by a quantum correction (1 − β2/8π) compared to
the classical one.

We also show that the higher local currents J
µ

M(t, x) satisfy ∂µJ
µ

M(t, x) = 0 and calculate
all matrix elements of all higher conserved QL = ∫

dxJ 0
L(t, x),

QL|p1, . . . , pn〉in =
n∑

i=1

eLθi |p1, . . . , pn〉in. (3)

In particular for L = ±1 the currents yield the energy–momentum tensor T µν = T νµ with
∂µT µν = 0.

The paper is organized as follows. In section 2 we recall some formulae of [1, 2] and in
particular those for breather form factors, which we need in the following. The properties of
the form factors are translated to conditions for the ‘K-functions’ and finally to simple ones of
the ‘p-functions’. In section 3 we investigate the asymptotic behaviour of bosonic form factors.
In section 4 we discuss several explicit examples of local operators as general exponentials of
the fundamental bose field, powers of the field, all higher conserved currents and the energy–
momentum tensor. Using induction and Liouville’s theorem we prove some identities, which
means that the same operators may be represented in terms of different p-functions. These
results are used in section 5 to prove operator field equations as the quantum sine-Gordon field
equation. In section 6 we present further types of representations of sine-Gordon breather
form factors: a determinant formula (see also [17, 19–21]) and two integral representations.
One of them is new and could presumably be generalized to other models with no backward
scattering (see also [31]). A proof is given in the appendix.
5 In the framework of constructive quantum field theory, quantum field equations were considered in [32, 33]. For
the sine-Gordon model, quantum field equations were discussed by Smirnov in [17] and for the sinh-Gordon model
in [22] (see also footnote 9).
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2. Breather form factors

Using the bound state fusion method, we derived in [2] from a general formula for soliton–
anti-soliton form factors the pure breather form factor formula which in particular for the case
of lowest breathers may be written in the form (1) with F(θ) being the two-particle form factor
function. It satisfies Watson’s equations

F(θ) = F(−θ)S(θ) = F(2π i − θ)

with the S-matrix given above. Explicitly, it is given by the integral representation [14]

F(θ) = exp

{∫ ∞

0

dt

t

cosh
(

1
2 + ν

)
t − cosh 1

2 t

cosh 1
2 t sinh t

cosh t

(
1 − θ

iπ

)}
(4)

normalized such that F(∞) = 1. In general, form factors of one kind of bosonic particle
(i.e. with a diagonal S-matrix) satisfy the following properties [1, 14, 16].

2.1. Properties of the form factors

The form factor function On(θ) is meromorphic with respect to all variables θ1, . . . , θn. It
satisfies Watson’s equations

On(. . . , θi, θj , . . .) = On(. . . , θj , θi, . . .) S(θij ). (5)

The crossing relation for the connected part (see e.g. [2]) of the matrix element means

〈p1|O(0)|p2, . . . , pn〉in
conn = On(θ1 + iπ, θ2, . . . , θn) = On(θ2, . . . , θn, θ1 − iπ)

which implies in particular

On(θ1, θ2, . . . , θn) = On(θ2, . . . , θn, θ1 − 2π i). (6)

The function On(θ) has poles determined by one-particle states in each sub-channel. In
particular, it has the so-called annihilation poles at, for example, θ12 = iπ such that the
recursion formula6 is satisfied,

Res
θ12=iπ

On(θ1, . . . , θn) = 2iOn−2(θ3, . . . , θn)(1 − S(θ2n), . . . , S(θ23)). (7)

Since we are dealing with relativistic quantum field theories, Lorentz covariance in the form

On(θ1, . . . , θn) = e−sµOn(θ1 + µ, . . . , θn + µ) (8)

holds if the local operator transforms as O → esµO where s is the ‘spin’ of O.

2.2. Conditions on the K-functions

Form factors of one kind of bosonic particle (which means that there is no backward scattering)
may be expressed by equation (1) in terms of the K-functions. Therefore, properties of the
form factors can be transformed into the following relations,

KO
n (. . . , θi , θj , . . .) = KO

n (. . . , θj , θi, . . .) (9)

KO
n (θ) = KO

n (θ1 − 2π i, θ2, . . . , θn) (10)

Res
θ12=iπ

KO
n (θ) = 2i

F(iπ)

n∏
i=3

1

F(θ2i + iπ)F(θ2i )

(
1 −

n∏
i=3

S(θ2i )

)
KO

n−2(θ
′′) (11)

KO
n (θ) = e−sµKO

n (θ1 + µ, . . . , θn + µ) (12)

where θ = θ1, . . . , θn and θ ′′ = θ3, . . . , θn.
6 This formula has been proposed in [16] as a generalization of formulae in [14] and it has been proved in [1] using
LSZ assumptions.
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2.3. Equations for the p-functions

Starting with a general integral representation for solitonic form factors and using the bound
state fusion method, we have shown in [2] that the lowest breather K-functions may be
expressed by equation (2) in terms of breather p-functions which follow from solitonic
p-functions. As already mentioned in the introduction, we make the ansatz that the
K-function is of the form (2) and we allow more general breather p-functions. Ansatz (2)
transforms the conditions on the K-function KO

n (θ) into simpler equations for the p-function
pO

n (θ, l). The p-function pO
n (θ, l) is holomorphic with respect to all variables θ1, . . . , θn, is

symmetric with respect to the exchange of the variables θi and li at the same time, and is
periodic with period 2π i:

pO
n (. . . , θi , θj , . . . , li , lj , . . .) = pO

n (. . . , θj , θi, . . . , lj , li , . . .) (13)

pO
n (θ, l) = pO

n (θ1 − 2π i, θ2, . . . , θn, l). (14)

With the shorthand notation θ ′ = θ2, . . . , θn, θ
′′ = θ3, . . . , θn and l′′ = l3, . . . , ln the recursion

relation

pO
n (θ2 + iπ, θ ′, l) = g(l1, l2)p

O
n−2(θ

′′, l′′) + h(l1, l2) (15)

holds where g(0, 1) = g(1, 0) = 2/(F (iπ) sin πν) and h(l1, l2) is independent of l′′. Lorentz
covariance reads as

pO
n (θ1 + µ, . . . , θn + µ, l) = esµpO

n (θ1, . . . , θn, l). (16)

We now show that these conditions of the p-function are sufficient to guarantee the properties
of the form factors.

Theorem 1. If the p-function pO
n (θ, l) satisfies the conditions (13)–(16), the K-function

KO
n (θ) satisfies the conditions (9)–(12), and therefore the form factor function On(θ) satisfies

the properties (5)–(8).

Proof. Except for (11) all claims are obvious. Taking the residue of (2) and inserting (11) we
obtain (with a = i sin πν)

Res
θ12=iπ

Kn(θ) = −a

1∑
l3=0

. . .

1∑
lr=0

(−1)l3+···+ln

n∏
3=i<j

(
1 +

li − lj

sinh θij

a

)

×
∑
l1 �=l2

(−1)l1+l2(l1 − l2)

n∏
i=3

((
1 +

l1 − li

sinh(θ2i + iπ)
a

)(
1 +

l2 − li

sinh θ2i

a

))

× (
g(l1, l2)p

O
n−2(θ

′′, l ′′) + h(l1, l2)
)

= 2i

F(iπ)
Kn−2(θ

′′)

(
n∏

i=3

(
1 +

a

sinh θ2i

)
−

n∏
i=3

(
1 − a

sinh θ2i

))
+ h-term.

We have used the identity

∑
l1 �=l2

(−1)l1+l2(l1 − l2)

n∏
i=3

((
1 +

l1 − li

sinh(θ2i + iπ)
a

)(
1 +

l2 − li

sinh θ2i

a

))
g(l1, l2)

= g(0, 1)

n∏
i=3

(
1 +

a

sinh θ2i

)
− g(1, 0)

n∏
i=3

(
1 − a

sinh θ2i

)
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valid for all li (i � 3). The same relation is valid when we replace g by h. The equation (11)
now follows from g(0, 1) = g(1, 0) = 2/(F (iπ) sin πν) and

F(θ + iπ)F(θ) = 1
/(

1 − i sin πν

sinh θ

)
(which is easily obtained from the integral representation (4)), provided that the h-term
vanishes. This is a consequence of the following lemma. Note that the h-term is proportional
to a Kn−2(θ

′′) given by the formula (2) with a p-function independent of the l ′′. �
Lemma 2. If the p-function in (2) does not depend on l1, . . . , ln then the corresponding
K-function vanishes.

Proof. The proof is easy and obtained by using induction and Liouville’s theorem: we
easily obtain K1(θ) = K2(θ) = 0. As induction assumptions we take Kn−2(θ

′′) = 0. The
function Kn(θ) is a meromorphic function in terms of the xi = eθi with at most simple poles
at xi = ±xj since sinh θij = (xi + xj )(xi − xj )/(2xixj ). The residues of the poles at xi = xj

vanish because of the symmetry. Furthermore, the residues at xi = −xj are proportional to
Kn−2(θ

′′) because similar to the proof of theorem 1 we have

Res
θ12=iπ

Kn(θ) = aKn−2(θ
′′)

(
n∏

i=3

(
1 +

a

sinh θ2i

)
−

n∏
i=3

(
1 − a

sinh θ2i

))
.

Therefore the function Kn(θ) is holomorphic everywhere. Furthermore, for x1 → ∞ we have
the asymptotic behaviour

Kn(θ) =
1∑

l2=0

· · ·
1∑

ln=0

(−1)l2+···+ln
∏

2�i<j�n

(
1 + (li − lj )

i sin πν

sinh θij

)

×
1∑

l1=0

(−1)l1
n∏

j=2

(
1 + (l1 − lj )

i sin πν

sinh θ1j

)
→ 0. (17)

Therefore Kn(θ) vanishes identically by Liouville’s theorem. �

3. Asymptotic behaviour of bosonic form factors

In this section, we derive the asymptotic behaviour of bosonic form factors by means of general
techniques of renormalized local quantum field theory. In particular,we use perturbation theory
in terms of Feynman graphs. As the simplest example, we investigate first the asymptotic
behaviour for p1 → ∞ or θ12 → ∞ of

〈0| :ϕ2 : |p1, p2〉in = 2〈0|ϕ(0)|p1〉〈0|ϕ(0)|p2〉 + o(1)

= 2Zϕ + o(1)

where : · · · : means normal ordering with respect to the physical vacuum. This may be seen
in perturbation theory as follows. Feynman graph expansion in lowest order means

〈0| :ϕ2 : |p1, p2〉in = 2




• •ϕ2 ϕ2

�
�
��

�
�

�� +

����

�
�

�
�


 + O(β4)

= 2

(
1 + iαβ2 1

2

∫
d2k

(2π)2

i

k2 − m2
1

i

(p − k)2 − m2
1

)
+ O(β4)

= 2 +
β2

4π

iπ − θ12

sinh θ12
+ O(β4).
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The second graph is of order O(ln p1/p1) for p1 → ∞. This is typical also for all orders in
perturbation theory:

�
�

�
�

•: ϕ2 :

�
��

�
��

θ1 θ2

= �
�

�
�

�
�

�
�

•: ϕ2 :

�
��

�
��

θ1 θ2

+ �
�

�
�

�
�

�
�

•: ϕ2 :

�
��

�
��

θ1 θ2

+ · · · .

Weinberg’s power counting theorem says that the second term and also all higher terms where
more lines connect the two bubbles are again at least of order O(ln p1/p1) for p1 → ∞.

The wavefunction renormalization constant Zϕ is defined as usual by the two-point
function of the (unrenormalized) field

∫
〈0|T ϕ(x)ϕ(0)|0〉 eipx d2x = +

�� �� +
�� �� �� �� + · · ·

= i

p2 − α − 	(p2)
= iZϕ

p2 − m2 − 	ren(p2)

where 	(p) is the self-energy, which means that it is given by the sum of all amputated
one-particle irreducible graphs

−i	(p2) = .

The physical breather mass m, the wavefunction renormalization constant Zϕ and the
renormalized breather self-energy are given by

m2 = α + 	(m2)

1

Zϕ
= 1 − 	′(m2)

	ren(p
2) = Zϕ(	(p2) − 	(m2) − (p2 − m2)	′(m2)).

Since the sine-Gordon model is a ‘super-renormalizable quantum field theory’ both
renormalization constants 	(m2) and 	′(m2) become finite after taking normal ordering in the
interaction Lagrangian. They can be calculated exactly. The wavefunction renormalization
constant was obtained in [14],

Zϕ = (1 + ν)

π
2 ν

sin π
2 ν

exp

(
− 1

π

∫ πν

0

t

sin t
dt

)
(18)

and the relation of the unrenormalized and the physical mass is calculated in the present paper
(see section 5)

α = m2 πν

sin πν
.

Both relations have been checked in perturbation theory.

Remark 3. Usually in renormalized quantum field theory (in particular when Z is infinite)
one would introduce the renormalized field with

〈0|ϕren(0)|p〉 = 1
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Figure 1. The wavefunction renormalization constant Zϕ given by equation (18) as a function of ν.

by ϕ(x) = √
Zϕϕren(x). Since Coleman’s paper [4] however, the convention for the sine-

Gordon model is to use the unrenormalized field ϕ(x) which is related to the massive Thirring
model current by

jµ = − β

2π
εµν∂νϕ.

Therefore, we have the normalization

〈0|ϕ(0)|p〉 =
√

Zϕ.

The wavefunction renormalization constant Zϕ is plotted as a function of ν in figure 1(a) for
negative values of ν which correspond to the sinh-Gordon model and in (b) for 0 � ν � 1
which corresponds to the sine-Gordon model for 0 � β2 � 4π . Note that in (a) the function
is symmetric with respect to the self-dual point ν = − 1

2 of the sinh-Gordon model and that in
(b) Zϕ = 1 for the free breather point ν = 0 and Zϕ = 0 for the free Fermi point ν = 1 where
the breather disappears from the particle spectrum.

As a generalization we now consider general n-particle form factors of a normal ordered
arbitrary power of the field O =: ϕN : and let m of the momenta tend to infinity. If
θ(λ) = (θ1 + λ, . . . , θm + λ, θm+1, . . . , θn), θ

′ = (θ1, . . . , θm) and θ ′′ = (θm+1, . . . , θn)

Weinberg’s power counting theorem for bosonic Feynman graphs states that for Re λ → ∞

[ϕN ]n(θ(λ)) ≈
N∑

K=0

(
N

K

)
[ϕK]m(θ ′)[ϕN−K ]n−m(θ ′′)

(19)
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. . . . . .

K N − K

θ1 θm θn

with the notation [ϕN ]n(θ) = 〈0| : ϕN : (0)|p1, . . . , pn〉in. For the special case of a local
operator which is an exponential of the fundamental Bose field O =: eiγϕ : (for some γ ) we
therefore have

[eiγϕ]n (θ(λ)) = [eiγϕ]m (θ ′) [eiγϕ]n−m(θ ′′) + O(e−λ).

This gives in particular for m = 1 and Re θ1 → ∞
[eiγϕ]n (θ1, θ2, . . . , θn) = [eiγϕ]1 (θ1) [eiγϕ]n−1(θ2, . . . , θn) + O(e−θ1). (20)
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4. Examples of operators

In this section, we present some examples of p-functions which satisfy the conditions of
section 2, in particular (13)–(16), and propose the correspondence of local operators, K-
functions and p-functions due to equations (1) and (2) for these examples,

O ↔ KO
n (θ) ↔ pO

n (θ, l).

4.1. Classical local operators

The classical sine-Gordon Lagrangian is

LSG = 1

2
∂µϕ∂µϕ +

α

β2
(cos βϕ − 1).

We consider the following classical local operators:

(1) eiγϕ(x) for arbitrary real γ .
(2) ϕN(x).
(3) Higher conserved currents for (L = 1, 3, 5 . . .)

J
ρ

L =
{
J +

L = ∂+ϕ(∂+)Lϕ + O(ϕ4)

J −
L = ((∂+)L−1ϕ + O(ϕ2)) sin ϕ.

A second set of conserved currents is obtained by replacing ∂+ → ∂−. The higher charges
are of the form

QL =
∫

dx(∂0ϕ∂+Lϕ + O(ϕ4)) L = 1, 3, 5, . . .

and the charges for even L vanish.
(4) T µν(x) = ∂µϕ∂νϕ − gµνLSG the energy–momentum tensor or in terms of light cone

coordinates (∂± = ∂0 ± ∂1 etc)

T ±± = T 00 ± T 01 ± T 10 + T 11 =
{
∂+ϕ∂+ϕ

∂−ϕ∂−ϕ

T +− = T 00 − T 01 + T 10 − T 11 = −2
α

β2
(cos βϕ − 1) = T −+.

(5) eiβϕ(x) for the particular value γ = β.

4.2. The normalization of form factors

The normalization constants are obtained in various cases by the following observations:

(a) The normalization of a field annihilating a one-particle state is given by the vacuum
one-particle matrix element; in particular for the fundamental Bose field, one has

〈0|ϕ(0)|p〉 =
√

Zϕ. (21)

Zϕ is the finite wavefunction renormalization constant (18) which has been calculated in
[14].

(b) If an observable like a charge Q = ∫
dxO(x) belongs to a local operator, we use the

relation

〈p′|Q|p〉 = q〈p′|p〉.
This will be applied for example to the higher conserved charges.
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(c) We use Weinberg’s power counting theorem for bosonic Feynman graphs. As discussed
in section 3, this yields in particular the asymptotic behaviour for the exponentials of the
boson field O =:eiγϕ :,

On(θ1, θ2, . . .) = O1(θ1)On−1(θ2, . . .) + O(e− Re θ1)

as Re θ1 → ∞ in any order of perturbation theory. This behaviour is also assumed to
hold for the exact form factors. Applying this formula iteratively, we obtain from (2)
relations7 for the normalization constants of the operators : eiγϕ :

(d) The recursion relation (15) relates Nn+2 and Nn. For all p-functions discussed below, this
means

Nn+2 = Nn

2

sin πνF(iπ)
n � 1 (22)

where F(iπ) is related to the wavefunction renormalization constant by

1

F(iπ)
= β2

8πν

sin πν

πν
Zϕ

see [2] and equation (18).

4.3. Local operators and their p-functions

For all cases to be discussed in the following, conditions (13)–(16) are again obvious except
that of the recursion relation (15) which will be discussed in detail. For later convenience,
we also list for some cases the explicit expressions of Kn(θ) for n = 1, 2 and the asymptotic
behaviour of Kn(θ) for Re θ1 → ∞ which is easily obtained analogous to the calculation
(17) in the proof of lemma 2. For convenience, we will use the notation Kn = NnK̃n in the
following.

4.3.1. Exponentials of the breather field. We propose the correspondence

eiγϕ ↔ N(q)
n K̃(q)

n (θ) ↔ p(q)
n (l) = N(q)

n

n∏
i=1

q(−1)li (23)

with q = q(γ ) (and q(0) = 1) to be determined below. For low particle numbers, one easily
calculates the K-functions

K̃
(q)

1 (θ) = (q − 1/q) K̃
(q)

2 (θ) = (q − 1/q)2 (24)

and the asymptotic behaviour

K̃(q)
n (θ) ≈ K̃

(q)

1 (θ1)K̃
(q)

n−1(θ
′).

The last formula is obtained similar to the proof of lemma 2. The proposal that the
p-function p

(q)
n (l) corresponds to an exponential of a bosonic field is supported by the

following observation. The asymptotic behaviour is consistent with that of the form factors of
exponentials of bosonic fields (20) as discussed in section 3. Indeed, it reads in terms of the
K-functions as K

(q)
n (θ) ≈ K

(q)

1 (θ1)K
(q)

n−1(θ
′) (since F(∞) = 1) provided that the normalization

constants satisfy

N(q)
n = N

(q)

1 N
(q)

n−1 ⇒ N(q)
n =

(
N

(q)

1

)n

.

This is what we discussed above under point (c) to determine the normalization constants.
Point (d) in the present case has the following meaning. The recursion condition (15) is
7 This type of argument has also been used in [14, 20–22].



9092 H Babujian and M Karowski

satisfied since in this case we have g(l1, l2) = q(−1)l1 +(−1)l2 N
(q)
n

/
N

(q)

n−2 which is symmetric
and h(l1, l2) = 0. Condition (15) with g(0, 1) = g(1, 0) = 2/(F (iπ) sin πν) implies the
recursion relation for the normalization constants (22) which finally yields

N
(q)

1 =
√

2

F(iπ) sin πν
=

√
Zϕ

β

2πν
N(q)

n =
(√

Zϕ
β

2πν

)n

(25)

where Zϕ is the breather wavefunction renormalization constant (18). The relation of F(iπ)

with Zϕ is obtained by elementary manipulations of the integral representations (4) and (18).
Recall that normal ordering implies N

(q)

0 = 1.

4.3.2. Powers of the breather field. Motivated by the expansion of (23) with respect to ln q

we propose the correspondence

ϕN ↔ N(N)
n K̃(N)

n (θ) ↔ p(N)
n (l) = N(N)

n

(
n∑

i=1

(−1)li

)N

. (26)

Again one easily calculates
(
with K̃(N)

n = K(N)
n

/
N(N)

n

)
the low particle number K-functions

K̃
(N)

1 (θ) = 2

K̃
(N)
2 (θ) = 2N+1

K̃
(N)

3 (θ) = 2(3N − 3) − sin2 πν
∏
i<j

1

cosh 1
2θij

and the asymptotic behaviour

K̃(N)
n (θ) ≈

N∑
K=1

(
N

K

)
K̃

(K)

1 (θ1)K̃
(N−K)

n−1 (θ ′)

where K(N)
n is only nonvanishing for N − n = even. This asymptotic behaviour agrees

with (19) which follows from Weinberg’s power counting argument and therefore justifies the
correspondence (26). The normalization condition 〈0|ϕ(0)|p〉 = √

Zϕ (see (21)) yields

N
(1)

1 = 1
2

√
Zϕ.

The other normalization constants and also the function q(γ ) are now obtained as follows.
Comparing the correspondences (23) and (26), we conclude

N(N)
n = N(q)

n

(
ln q

iγ

)N

.

This implies for N = n = 1 together with (25)

q = exp

(
iγ

N
(1)
1

N
(q)

1

)
= exp

(
i
πν

β
γ

)

and finally the normalization constants

N(N)
n =

(
1

2

√
Zϕ

)n (
πν

β

)N−n

. (27)

We compare these general results with known special cases [14]. In particular for n = N = 2
we have

〈0| :ϕ2 :(0)|p1, p2〉in = K
(2)

2 (θ12)F (θ12) = 8N
(2)

2 F(θ12)

= 2ZϕF(θ12)
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which agrees with formulae (4.4)–(4.6) of [14]. Further for n = 3 and N = 1 we have

〈0|ϕ(0)|p1, p2, p3〉in = K
(1)

3 (θ)
∏
i<j

F (θij )

= −(Zϕ)3/2 1

8

(
β

sin πν

πν

)2 ∏
i<j

F (θij )

cosh 1
2θij

which again agrees with formulae (4.9)–(4.12) of [14].

4.3.3. Higher conserved currents. In the following, we present new results concerning the
higher conservation laws which are typical for integrable quantum field theories8. We propose
the correspondence

J ±
L ↔ p(L,±)

n (θ, l) = ±N(JL)
n

n∑
i=1

e±θi

n∑
i=1

eL(θi− iπ
2 (1−(−1)li ν))

for n = even and zero for n = odd (L = ±1,±3, . . .). Again one easily calculates the
two-particle K-function,

K̃
(L,±)
2 (θ) = −2(−i)L sin

1

2
Lπν

sin πν

sinh θ12
(e±θ1 + e±θ2)(eLθ1 − eLθ2). (28)

The recursion condition (15) is satisfied since g(l1, l2) = N(JL)
n

/
N

(JL)
n−2 is symmetric and

h(l1, l2) = ∑n
i=3 e±θi

∑2
i=1 eL(θi− iπ

2 (1−(−1)li ν)) is independent of li, i > 2. Again we have the
recursion relation for the normalization constants (22). The two-particle normalization we
calculated by means of (b) with the charges

〈p′|QL|p〉 =
∫ ∞

−∞
dx〈p′|1

2
(J +

L(x) + J −
L (x))|p〉

=
∫ ∞

−∞
dx ei(p−p′)x 1

2

(
K

(L,+)

2 + K
(L,−)

2

)
(θ ′ + iπ, θ)F (θ ′ + iπ − θ)

= 2πδ(p − p′)
1

2

(
K

(L,+)
2 + K

(L,−)
2

)
(θ + iπ, θ)F (iπ)

= 〈p′|p〉 eLθ if L odd.

Using (28) we obtain

1
2

(
K

(L,+)

2 + K
(L,−)

2

)
(θ + iπ, θ) = −N(JL)

n 2 (−i)L sin 1
2Lπν sin πν cosh θ eLθ(eLiπ − 1)

= 2m cosh θ eLθ/F (iπ)

for L odd. For even L the charges vanish as in the classical case. With the relation of the
normalization constants (22) we finally obtain

N(JL)
n = miL

4 sin 1
2Lπν

(√
Zϕ

β

2πν

)n

. (29)

Next we derive all eigenvalues of the higher charges (3). We show that for n′ + n > 2 the
connected part of the matrix element out〈p′

1, . . . , p
′
n′ |QL|p1, . . . , pn〉in vanishes. The analytic

8 In [17] form factors of higher currents in the sine-Gordon model were proposed, however the charges of these
currents vanish. The densities were proposed to be of the form (∂+)L∂1A(x) where the operator A is related to the
energy–momentum tensor, in particular ∂0∂1A = T 10 and ∂1∂1A = T 00. For L > 1 obviously

∫
dx(∂+)L∂1A(x) =∫

dx(∂+)L−2∂1(T 10 + T 00 + T 01 + T 00) = 0 where the conversation laws ∂0T µ0 = ∂1T µ1 have been used.
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continuationOn′+n(θ
′+iπ, θ) yields this connected part. From the correspondence of operators

and p-functions

QL =
∫

dxJ 0
L(x) ↔ 2πδ(P ′ − P)N(JL)

n m

(
−

n′∑
i=1

sinh θ ′
i +

n∑
i=1

sinh θi

)

×
(

n′∑
i=1

eL(θ ′
i +iπ− iπ

2 (1−(−1)li ν)) +
n∑

i=1

eL(θi− iπ
2 (1−(−1)li ν))

)

the claim follows since for n′ + n > 2 there are no poles which may cancel the zero at P ′ = P

where P (′) = ∑
p

(′)
i . Therefore, contributions to the matrix element come from disconnected

parts which contain (analytic continued) two-particle form factors,
out〈p′

1, . . . , p
′
n′ |QL|p1, . . . , pn〉in

=
∑
i,j

out〈p′
1, . . . , p̂

′
i , . . . , p

′
n′ |p1, . . . , p̂j , . . . , pn〉in 〈p′

i |QL|pj 〉

= out〈p′
1, . . . , p

′
n′ |p1, . . . , pn〉in

n∑
i=1

eθiL

where p̂j means that this particle is missing in the state.
From the higher currents for L = ±1 we get the light cone components of the energy–

momentum tensor T ρσ ∝ J ρ
σ with ρ, σ = ± (see also [22]).

4.3.4. The energy–momentum tensor. We propose the correspondence

T ρσ ↔ pρσ
n (θ, l) = ρN(T )

n

n∑
i=1

eρθi

n∑
i=1

eσ (θi− iπ
2 (1−(−1)li ν)) (30)

for n even and p
ρσ
n = 0 for n odd. The normalization is again determined by (c) namely

〈p′|Pν |p〉 = 〈p′|
∫

dx T 0ν(x)|p〉 = 〈p′|p〉pν (31)

which in analogy to (29) gives

N(T )
n = im2

4 sin 1
2πν

(√
Zϕ

β

2πν

)n

. (32)

Note that at first sight the energy–momentum tensor does not seem to be symmetric. However,
it is due to an identity proved in the next section (see theorem 5). The conservation law follows
as above for the higher currents and also the eigenvalue equation of the energy–momentum
operator with the result

Pν |p1, . . . , pn〉in =
n∑

i=1

pν
i |p1, . . . , pn〉in.

4.3.5. Special exponentials of the breather field. For the special cases of the exponential of
the field γ = ±β we propose the alternative correspondence to (23),

e±iβϕ ↔ N±
n K̃±

n (θ) ↔ p±
n (θ, l) = N±

n

n∑
i=1

e∓θi

n∑
i=1

e±(θi− iπ
2 (1−(−1)li ν)). (33)

Again one easily calculates for low particle number the K-functions

K̃±
1 (θ) = 2 sin 1

2πν K̃±
2 (θ) = ±4i sin 1

2πν sin πν
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and the asymptotic behaviour

K̃±
n (θ) ≈ ±2i sin πνK̃±

n−1(θ
′).

The proof of the last formula is given in the appendix. The normalization constants are
calculated analogous to the case of the general exponential and take the form

N±
n = ±i

sin πν

sin 1
2πν

(√
Zϕ

β

2πν

)n

. (34)

4.4. Identities

It turns out that the correspondence between local operators and p-functions is not unique. In
this section, we prove some identities which we will need in the following section to prove
operator equations. To have a consistent interpretation of K

(q)
n (θ) with q = eiπνγ /β as the

K-function of eiγϕ(x) it is necessary that K
(q)
n (θ) is even/odd for n = even/odd under the

exchange q ↔ 1/q . For γ = ±β the K-functions of the general exponentials should turn
into the K-functions of the special exponentials. These facts are expressed by the following
lemma.

Lemma 4. Let the K-functions

Kn(θ) =
1∑

l1=0

· · ·
1∑

lr=0

(−1)l1+···+lr
∏

1�i<j�n

(
1 + (li − lj )

i sin πν

sinh θij

)
pn(θ, l)

be given by the p-functions,

K(q)
n (θ) ↔ p(q)

n (l) = N(q)
n

n∏
i=1

q(−1)li

K±
n (θ) ↔ p±

n (θ, l) = N±
n

n∑
i=1

e∓θi

n∑
i=1

e±(θi− iπ
2 (1−(−1)li ν))

K(1)
n (θ) ↔ p(1)

n (l) = N(1)
n

n∑
i=1

(−1)li .

Then the following identities hold (again with Kn(θ) = NnK̃n(θ)),

K̃(q)
n (θ) = −(−1)nK̃(1/q)

n (θ) K̃+
n(θ) = −(−1)nK̃−

n (θ) (35)

in particular for γ = β, i.e. q = eiπν ,

K+
n (θ) = K(q)

n (θ)

and furthermore

K̃(1)
n (θ) = 1

2 sin 1
2πν

(
n∑

i=1

eθi

n∑
i=1

e−θi

)−1 (
K̃+

n(θ) + K̃−
n (θ)

)
. (36)

Proof. Again as in the proof of lemma 2 we use induction and Liouville’s theorem. We
introduce the differences

fn(θ) = K̃(q)
n (θ) + (−1)nK̃(1/q)

n (θ)

or

fn(θ) = K̃+
n(θ) + (−1)nK̃−

n (θ)
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or

fn(θ) = K+
n (θ) − K(q=exp(iπν))

n (θ)

or

fn(θ) = K̃(1)
n (θ) − 1

2 sin 1
2πν

(
n∑

i=1

eθi

n∑
i=1

e−θi

)−1 (
K̃+

n(θ) + K̃−
n (θ)

)
.

Then the results of the previous subsection 4.3 imply in all cases f1(θ) = f2(θ) = 0.
As induction assumptions we take fn−2(θ

′′) = 0. The functions fn(θ) are meromorphic
functions in terms of the xi = eθi with at most simple poles at xi = ±xj since
sinh θij = (xi + xj )(xi − xj )/(2xixj ). The residues of the poles at xi = xj vanish because
of the symmetry and again the residues at xi = −xj are proportional to fn−2(θ

′′) due to the
recursion relation (11). Furthermore for xi → ∞ again fn(θ) → 0. Therefore fn(θ) vanishes
identically by Liouville’s theorem for all n. For the last case of fn(θ) it has been used that
because of (35) for n even both K̃±-terms cancel and that they are equal for odd n. Due to
(33) K̃+

n is proportional to
∑n

i=1 e−θi and K̃−
n is proportional to

∑n
i=1 eθi . Hence both are

proportional to
∑n

i=1 e−θi
∑n

i=1 e+θi which means that there are no extra poles at
∑n

i=1 eθi = 0
or

∑n
i=1 e−θi = 0. �

5. Operator equations

The classical sine-Gordon model is given by the wave equation

�ϕ(t, x) +
α

β
sin βϕ(t, x) = 0.

If this is fulfilled we also have the relation for the trace of the energy–momentum tensor,

T µ
µ (t, x) = −2

α

β2
(cos βϕ(t, x) − 1).

In this section, we construct the quantum version of these two classical equations. In the
following : · · · : denotes normal ordering with respect to the physical vacuum which, in
particular for the vacuum expectation value, means 〈0| : eiγϕ : (t, x)|0〉 = 1. As consequences
of the identities of section 4.4 we can prove quantum field equations.

Theorem 5. The following operator equations are to be understood in terms of all their matrix
elements.

(1) For the exceptional value γ = β the operator �−1 : sin γ ϕ : (t, x) is local and the
quantum sine-Gordon field equation holds9,

�ϕ(t, x) +
α

β
: sin βϕ : (t, x) = 0 (37)

if the ‘bare’ mass
√

α is related to the renormalized one by10

α = m2 πν

sin πν
. (38)

Here m is the physical mass of the fundamental boson.
(2) The energy–momentum tensor is symmetric and its trace satisfies

T µ
µ (t, x) = −2

α

β2

(
1 − β2

8π

)
(:cos βϕ : (t, x) − 1). (39)

9 This field equation was also discussed in [17] and for the sinh-Gordon case in [22]. However, in these papers the
relations of the bare and the renormalized masses differ from (38) and are not consistent with perturbation theory and
the results of [34, 35].
10 Before this formula was found in [34, 35] by different methods.
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(3) For all higher currents the conservation laws hold,

∂µJ
µ

L (x) = 0 L = ±1,±3, . . . .

Proof.

(1) From (33) we have the correspondence between operators and K-functions:

�−1 sin βϕ ↔ K+
n (θ) − K−

n (θ)

2i
∑n

i=1 eθi

∑n
i=1 e−θi

.

As shown in the proof of lemma 4 there are no poles at
∑n

i=1 eθi = 0 or
∑n

i=1 e−θi = 0.
Therefore �−1 : sin βϕ : is a local operator. Furthermore by equation (36)

n∑
i=1

eθi

n∑
i=1

e−θiK(1)
n (θ) = πν

β sin πν

1

2i

(
K+

n (θ) − K−
n (θ)

)
where the normalizations (27) and (34) have been used. This means in particular that

N(1)
n

N+
n

i

sin 1
2πν

= πν

β sin πν
.

In terms of operators, this is just the quantum sine-Gordon field equation. Comparing
this result with the classical equation, we obtain the relation (38) between the bare mass
and the physical mass.

(2) Using (30) and (33) we have the correspondence between operators and K-functions for
n even:

T +− ↔ N(T )
n K̃−

n T −+ ↔ −N(T )
n K̃+

n

T µ
µ ↔ K(T )

n (θ) = − 1
2N(T )

n

(
K̃+

n − K̃−
n

)
cos βϕ − 1 ↔ 1

2

(
K+

n (θ) + K−
n (θ)

)
.

The symmetry T +− = T −+ is again a consequence of (35). Furthermore the identity of
K-functions follows,

K(T )
n (θ) = −

α
(

1 − β2

8π

)
β2

(
K+

n (θ) + K−
n (θ)

)
where the normalizations (32) and (34) have been used which means that

N(T )
n

N+
n

= 2
α

β2

(
1 − β2

8π

)
(3) The claim follows since we have the correspondence of operators and p-functions,

∂µJ
µ

L ↔ P +p(L,−)
n (θ, l) + P−p(L,+)

n (θ, l) = −N(JL)
n m

×
(

n∑
i=1

eθi

n∑
i=1

e−θi −
n∑

i=1

e−θi

n∑
i=1

eθi

)
n∑

i=1

eL(θi− iπ
2 (1−(−1)li ν)) = 0. �

The factor πν
sin πν

modifies the classical equation and has to be considered as a quantum
correction. For the sinh-Gordon model,an analogous quantum field equation has been obtained
in [22]11. Note that in particular at the ‘free fermion point’ ν → 1 (β2 → 4π) this factor
diverges, a phenomenon which is to be expected from short-distance investigations [36]. For
fixed bare mass square α and ν → 2, 3, 4, . . . the physical mass goes to zero. These values
of the coupling are known to be special: (1) the Bethe ansatz vacuum in the language of
11 It should be obtained from (37) by the replacement β → ig. However, the relation between the bare mass and the
renormalized mass in [22] differs from the analytic continuation of (38).
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Figure 2. Feynman graphs.

the massive Thirring model shows phase transitions [37] and (2) the model at these points
is related [38–40] to Baxters RSOS-models which correspond to minimal conformal models
with central charge c = 1 − 6/(ν(ν + 1)) (see also [22]).

The second formula (39) is consistent with renormalization group arguments [41, 42]. In
particular, this means that β2/4π is the anomalous dimension of cos βϕ. Again this operator
equation is modified by a quantum correction (1 − β2/8π). Obviously, for fixed bare mass
square α and β2 → 8π the model will become conformal invariant. This in turn is related to a
Berezinski–Kosterlitz–Thouless phase transition [9, 43, 44]. The conservation law ∂µT µν = 0
for the energy–momentum tensor holds, because it is obtained from the higher currents for
L = ±1. All the results may be checked in perturbation theory by Feynman graph expansions.
In particular, in lowest order, the relation between the bare and the renormalized mass (38) is
given by figure 2(a). It has already been calculated in [14] and yields

m2 = α

(
1 − 1

6

(
β2

8

)2

+ O(β6)

)

which agrees with the exact formula above. Similarly, we check the quantum corrections
of the trace of the energy–momentum tensor (39) by calculating the Feynman graph of
figure 2(b) with the result again taken from [14] as

〈p| :cos βϕ − 1: |p〉 = −β2

(
1 +

β2

8π

)
+ O(β6).

This again agrees with the exact formula above since the normalization given by equation (31)
implies 〈p|T µ

µ |p〉 = 2m2.

6. Other representations of form factors

6.1. Determinant representation of bosonic sine-Gordon form factors

The scaling Lee–Yang model is equivalent to the breather part of the sine-Gordon model
for the coupling constant equal to ν = 1

3 (in our notation). For this model, Smirnov [17]
derived a determinant formula for form factors (see also [19]). Generalizing this formula
in [20, 21] form factors were proposed for the sinh-Gordon model in terms of determinants.
The sinh-Gordon model form factors should be identified with sine-Gordon form factors by
analytic continuation ν → negative values. Using this one would propose for the sine-Gordon
model an analogous determinant representation for the K-function of exponentials of the field
O =: eikβϕ :,

K̃(q)
n (θ) = (q ′ − 1/q ′)n

n∏
i,j=1

(xi + xj )
−1 Detn(x, k)
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where x = (x1, . . . , xn) with xi = eθi and q ′ = eiπν . The determinant is

Detn(x, k) = det
(
((k + i − j)q ′σ2i−j−1(x))ni,j=1

)

=

∣∣∣∣∣∣∣
(k)q ′σ0 · · · (k − n + 1)q ′σ−n+1

...
. . .

...

(k + n − 1)q ′σ2n−2 · · · (k)q ′σn−1

∣∣∣∣∣∣∣
where the symmetric polynomials σl(x) are defined by

n∏
l=1

(y + xl) =
n∑

λ=0

yn−λσ
(n)
λ (x)

and (k)q ′ = sin kπν/sin πν. This relation of K̃
(q)
n (θ) with Detn(x, k) could be proved similar

as in the proof of lemma 4, once the corresponding recursion relation (11) has been proved
for Detn(x, k). This has been done only for the special values ν = − 1

2 ,− 1
3 of the coupling

constant [20].

6.2. Integral representations of breather form factors

In [1, 2] integral representations for solitonic form factors were proposed. These formulae
are quite general and model independent, so analogous formulae should also hold for breather
form factors. We propose for n lowest breathers and 0 � m � n

On(θ) =
∫
Cθ

dz1 · · ·
∫
Cθ

dzmh(θ, z)p̌O(θ, z) (40)

with the scalar function (cf [1])

h(θ, z) =
∏

1�i<j�n

F (θij )

n∏
i=1

m∏
j=1

φ̃(θi − zj )
∏

1�i<j�m

τ(zi − zj )

and

φ̃(z) = S(z)

F (z)F (z + iπ)
= 1 +

i sin πν

sinh z
= sinh z + i sin πν

sinh z
.

τ (z) = 1

φ̃(z)φ̃(−z)
= sinh2 z

sinh2 z + sin2 πν
.

The two breather form factor function F(θ) is again defined by equation (4). For all integration
variables zj (j = 1, . . . ,m) the integration contours Cθ enclose clockwise oriented points
zj = θi (i = 1, . . . , n). The above integral representation satisfies all form factor properties if
suitable conditions for the new type of p-function12 p̌O(θ, z) are assumed. Here we consider
p̌ = constant. The form factors of the exponential of the field O(x) =: eiγϕ : (x) are given by
linear combinations of expressions (40),

On(θ) =
(√

Zϕ
β

2πν

)n ∏
1�i<j�n

F (θij )

n∑
m=0

qn−2m(−1)mInm(θ) (41)

12 A similar function was used by Cardy and Mussardo [18] in the case of the scaling Ising model to represent the
various operators.



9100 H Babujian and M Karowski

where again q = exp
(
iπν

β
γ
)

and

Inm(θ) = 1

m!

∫
Cθ

dz1

R
· · ·

∫
Cθ

dzm

R

n∏
i=1

m∏
j=1

φ̃(θi − zj )
∏

1�i<j�m

τ(zi − zj )

=
∑
K⊆N
|K|=m

∏
i∈N\K

∏
k∈K

φ̃(θik)

with R = Res
θ=0

φ̃(θ) and N = {1, . . . , n},K = {k1, . . . , km}. It is easy to verify that the

asymptotic behaviour (20) is satisfied. Also the low particle number form factors agree with
equations (24). This proves formula (41).

Another integral representation is directly obtained from the integral representations for
solitonic form factors in [2],

O(θ) = ÑO
n

∏
i<j

(
F(θij ) tanh

1

2
θij sinh

1

2
(θij + iπν) sinh

1

2
(θij − iπν)

)

×
∫
Dθ1

dz1 · · ·
∫
Dθn

dzr

n∏
i=1

n∏
j=1

χ(θi − zj )
∏
i<j

sinh zijp(θ, z) (42)

where the contour Dθi
consists of two circles around the poles at θi − iπ

2 (1 ± ν) and

χ(θ) = 1

sinh 1
2

(
θ − iπ

2 (1 − ν)
)

sinh 1
2

(
θ − iπ

2 (1 + ν)
) .

As a matter of fact, in [2] from this integral representation the representation (1) with the
K-function (2) was derived using the identity

sinh 1
2 (θij − iπν)χ

(
θi − z

(lj )

j

)
χ

(
θj − z

(li )
i

)
sinh

(
z
(li )
i − z

(lj )

j

)
= 2

tanh 1
2ξij sinh 1

2 (ξij + iπν) sinh 1
2 (ξij − iπν)

(
1 + (li − lj )

i sin πν

sinh ξij

)

for li , lj = 0, 1 and z
(li )
i = ξi − iπ

2 (1 − (−1)li ν). Performing one integration in equation (42)
and using symmetry properties of the integrand, one obtains an integral representation of the
type as used by Smirnov in [17].
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Appendix. Asymptotic behaviour

Lemma 6. The K-functions defined by equation (2) and the p-functions

(a) p̃
(q)
n (θ) =

n∏
i=1

q(−1)li

(b) p̃(N)
n (θ) =

(
n∑

i=1
(−1)li

)N

(c) p̃(±)
n (θ) =

n∑
i=1

e∓θi

n∑
i=1

e±z
(li )

i

satisfy for Re θ1 → ∞ the asymptotic behaviour

(a) K̃
(q)
n (θ) = K̃

(q)

1 (θ1)K̃
(q)

n−1(θ
′) + O(e− Re θ1)

(b) K̃(N)
n (θ) =

N−1∑
K=1

(
N

K

)
K̃

(K)
1 (θ1)K̃

(N−K)
n−1 (θ ′) + O(e− Re θ1)

(c) K̃±
n (θ) = ±2i sin πνK̃±

n−1(θ
′) + O(e− Re θ1)

with θ ′ = (θ2, . . . , θ1). In particular,

K̃
(1)

1 (θ) = const and K̃(1)
n (θ) = O(e− Re θ1) for n > 1.

Proof. The first two asymptotic relations are quite obvious. Note that K̃
(q)

1 = q − 1/q and
K̃

(1)
1 (θ) = 2.

(a) For K̃
(q)
n (θ) and Re θ1 → ∞ we have

K̃(q)
n (θ) =

1∑
l1=0

(−1)l1q(−1)l1 K̃
(q)

n−1(θ
′) + O(e− Re θ1)

(b) For K̃(N)
n (θ) we use

(
n∑

i=1

(−1)li

)N

=
N∑

K=0

(
N

K

)
((−1)l1)K

(
n∑

i=2

(−1)li

)N−K

which proves the claim as in the previous case.
(c) For K̃+

n(θ) and Re θ1 → ∞ we have

n∑
i=1

e−θi

n∑
i=1

ez
(li )

i =
(

e−θ1 +
n∑

i=2

e−θi

)(
eθ1− iπ

2 (1−(−1)l1ν) +
n∑

i=2

ez
(li )

i

)

= e− iπ
2 (1−(−1)l1ν) +

(
n∑

i=2

e−θi

)
eθ1− iπ

2 (1−(−1)l1 ν)

+
n∑

i=2

e−θi

n∑
i=2

ez
(li )

i + O(e− Re θ1).

We calculate the leading terms O(1). The contribution of the first term consists of two
types: one vanishes because of the lemma above and the other is of order O(e− Re θ1).
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The contribution of the third term vanishes after summation over l1. The contribution of
the second term is proportional to

1∑
l1=0

(−1)l1


1 +

n∑
j=2

(l1 − lj )
i sin πν

sinh θ1j


 eθ1− iπ

2 (1−(−1)l1 ν)

≈ −ieθ1

(
e

iπ
2 ν − e− iπ

2 ν
)

+ 2i sin πν

n∑
j=2

1∑
l1=0

(−1)l1(l1 − lj ) eθj− iπ
2 (1−(−1)l1ν).

The first term again vanishes due to the lemma and the second one yields

2i sin πν

n∑
j=2

1∑
l1=0

(−1)l1(l1 − lj ) eθj− iπ
2 (1−(−1)l1 ν)

= 2i sin πν

n∑
j=2

1∑
l1=0

(−1)l1(l1 − lj ) eθj− iπ
2 (1−(−1)

1−lj ν)

= −2i sin πν

n∑
j=2

eθj− iπ
2 (1+(−1)

lj ν).

Therefore, we finally obtain the asymptotic behaviour

K̃+
n(θ) = −2i sin πν

1∑
l2=0

· · ·
1∑

ln=0

(−1)l2+···+ln
∏

2�i<j�n

(
1 + (li − lj )

i sin πν

sinh θij

)

×
n∑

i=2

e−θi

n∑
j=2

eθj− iπ
2 (1+(−1)

lj ν) + O(e− Re θ1)

= 2i sin πνK̃+
n−1(θ

′) + O(e− Re θ1)

with θ ′ = (θ2, . . . , θn). We have used

1∑
l2=0

· · ·
1∑

ln=0

(−1)l2+···+ln
∏

2�i<j�n

(
1 + (li − lj )

i sin πν

sinh θij

)

×
n∑

j=2

(
eθj− iπ

2 (1+(−1)
lj ν) + eθj− iπ

2 (1−(−1)
lj ν)

)
= 0

which follows from lemma 2. For K̃−
n (θ) and Re θ1 → ∞ we have

n∑
i=1

eθi

n∑
i=1

e−z
(li )

i =
(

eθ1 +
n∑

i=2

eθi

)(
e−θ1+ iπ

2 (1−(−1)l1ν) +
n∑

i=2

e−z
(li )

i

)

= e
iπ
2 (1−(−1)l1ν) + eθ1

n∑
i=2

e−θj− iπ
2 (1−(−1)

lj ν) +
n∑

i=2

eθi

n∑
i=2

e−z
(li )

i + O(e− Re θ1).

We again calculate the leading terms O(1). Again the contribution of the first term consists
of two types: one vanishes because of the lemma above and the other is of order O(e− Re θ1).
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The contribution of the third term vanishes after summation over l1. The contribution of the
second term is proportional to

1∑
l1=0

(−1)l1


1 +

n∑
j=2

(l1 − li )
i sin πν

sinh θ1i


 eθ1

n∑
j=2

e−θj + iπ
2 (1−(−1)

lj ν)

≈ 2i sin πν

n∑
j=2

eθi

1∑
l1=0

(−1)l1(l1 − lj ) e−θj + iπ
2 (1−(−1)

lj ν)

= −2i sin πν

n∑
j=2

eθi

n∑
j=2

e−θj + iπ
2 (1−(−1)

lj ν).

Therefore, we finally obtain the asymptotic behaviour

K̃−
n (θ) = −2i sin πν

1∑
l2=0

. . .

1∑
ln=0

(−1)l2+···+ln

n∏
2�i<j�n

(
1 + (li − lj )

i sin πν

sinh θij

)

×
n∑

i=2

eθi

n∑
j=2

e−θj + iπ
2 (1+(−1)

lj ν) + O(e− Re θ1)

= −2i sin πνK̃−
n−1(θ

′) + O(e− Re θ1). �

Analogously, one may discuss the behaviour for Re θ1 → −∞.
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